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"1. I..O...ON

In this report we will consider the separable nonlinear optimization

problem

;P . f(x) mi nj1 Z(xj) ( ,)

a. : x bj j 1, ... , n.

One frequently employed algorithn for approximately optimizing (1) is the

"Separable Progr"aming" algorithm of Miller [I]. This method forms a piece-

wise linear approximation to (1) using a fixed grid of points for each Xj
%.i

* ~ and then locally optimizes the approximate program using linear programming.

When. all of the functions f and •. are convex functions, then

* •
the procedure can be extended to optimize over a variable grid thus giving

an arbitrarily accurate approximation in the vicinity of the optimal solution.

This procedure, which we tdill call Grid Linearization is described in Wolfe

1[2J and can be viewed as an extension of the Dantzig-Wolfe Decomposition

Principle for linear programs in that it uses a restricted master linear

program to optimize over the current grid at any stage, and subprograms

involving the restricted master dual variables to generate new grid points

which become new columns of the restricted master at the next stage. For

, ,convex programs this pr6cedure has been proved to converge in Dantzig E3].

The procedure is attractive because the restricted master program is a

0 Ge,:,.ralized Upper Bounded L. P. (and hence easy to solve), while the non-

linear subproblems are convex sIngle variable problems (also easy to solve).
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In this paper we consider the extension of the grid linearization tech-

nique to non-convex separable programs. The result is an algorithm which

combines the grid linearization procedure with a branch and bound structure.

Restricted master linear programs are solved at each stage of the branch and

bound search. Nonconvex single variable subproblems generate bounds for the

branch and bound 'search and also generate new grid points for refinement of

the linear approximation.

Section II of this report gives a brief sketch of the grid linearization

process, primarily to introduce notation. Section III develops the algorithm

for the nonconvex case. Section IV discusses the relation of this method

to other algorithms in the literature. Section V deals with computational

considerations for attaining efficiency.

II. BRIEF REVIEW OF THE GRID LINEARI TION METHOD (Convex Case)

A. Fixed Grid

We consider problem NILP (1) with fj ,, gl (i=l, M..,m;

J = 1, ... , n) all convex functions. For each variable xj(i=l, ... , n)

suppose we have chosen a (temporarily fixed) grid of points x ((k - 0, .... nj)

.ij . with

aj -Xjo •Xj 1 5 ... xjk jnj =bJ

Then any £ [aj b can be written as a convex combination of grid points

n

xi k-aikk (3)

I - -.
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with

A =1 (t4)
k

Jk o (5)

If the convex combination is ,such that for every j at most two, Ij are

non-zero and those two have adjacent k indices, then a piecewise linear

approxtfation to fj (xj) is defined by

Jk fj(xjk) (6)

and sitilarly for the gj)(xj)

Thus if we let fJk=fJ and , then the

separable prograwming method defines a linear program P• who~e decision

variables are the convex combination weights X

X Mn A -ký'.k (7)J k JJ,

S.T Xjk ik 0OV.k

SJ k

,k J 'k



An optimal solution to the linear progam P will, if the above adjacency

condition is satisfied, provide an optimal solution to the piecewise linear

approximation to NLP (1) with solution values given by (3) • If NLP is

convex, then any feasible P• solution gives a feasible NLP solution and

it is well known that the optimization process will automatically result in-

an adjacent solution. Hence P efficiently approximates the solution to

NLP.

B. Grid Refinement

When an optimal solution to P has been reached, a natural question

is whether there are new grid points in the vicinity of the solution which will

0iprove the piecewise ,linear approximation and hence the accuracy of the optimal

solution. The grid linearization process generates new grid points as follows:

Suppose A is the optimal primal solution and (i, a) = (ni, "" r am,0 l"

the optimal dual solution to the L.P. P"

A new grid point xjk can improve-the P. solution only' if its reduced cost

in the current optimal tableau i5 negative. This reduced cost is

Sf(x ) (x )-a (8)

Thus the grid linearization algorithm solves the convex single variable

subproblems

min f (x n) -~rgi (xJ) (9)
a~ a

a, 4 x:z b

iJ J



,for each , n with solutions x

. If for any J we have

f 7r U Y (10)

•!i•,: fj ,(•j) -l Xi r.i. gij (Xi)< • (O

then X =x is a new grid point value for x which may improve the
ik .i

solution. If (10) is violated for all j= .. , n, then the current

"solution for PX translates via (3) into an optimal solution for NLP.

In the Grid Linearization algorithm this process is applied iteratively,

alternately optimizing P• (called the restricted master problem) and using

the subproblems (9) to generate refined grid points and hence to generate

new columns which are added to the restricted-master P for the next

iteration. It has been proved (see for example Dantzig 13]) that this

process is infinitely convergent for convex NLP. Further description of

the process and proofs of its properties can be found in Lasdon [4] and

Dantzig [3]

I1I. AN ALGORITHM FOR THE NONCONVEJ CASE

A. Lower Bound

For convenience we restate the NLP problem (1)

min f(x) f ( x) 1

S.T. g(x• g i i (xi) 0 1 = 1, ... , .

"aj .3 x
-,- --
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In this section we make no assumptions about convexity of the problem

functions. Let

C=xja x b V} (nx)

and C= [a, bJ . (12)

Define the Lagrangian function for NLP as

L(x,1r) L L(x~ ,Tr)

Ii

(f x (x) (13)

A and note that it is addititively separable in the variables Xj

An important lower bound is given in the following Theorem:

Theorem 1 Let x be any feasible solution for NLP (1) . If

1i , O 4 = 1, .,,, m

Then

min L3 (xj IT) r. ) . (ix)

xi CCi

The proof is a standard result from nonlinear duality theory and will not

be repeated here.

"In particular, Theorem 1 shows that

min L(x, v) = } ?•in L (xI , ir) (15)
xec J x CCJ



is a lower bound on the (global) optimal objective function value for

NLP.
It should be emphasized that 1) this theorem is true for any NLP -

no assumptions whatever are required (in particular convexity is not,

required) '

2) The Lagraxgian minimization in (15) must be a global minimization.

Since L = L it suffices to be able to globally minimize the single I
variable (nonconvex) functions L

3) The bound is tight for well behaved convex programs in the sense

"that when Tf is dual optimal, (14) holds with equality V. For non-

convex programs, however, it is well known that a "duality gap" may occur .

so that there may be no feasible x and Tr 0 for which

"mi L(x , r) = (x)
xcC

4) The Lagrangian minimization (14) is exactly the same as the "

Grid Linearization subproblem (9)

B. Feasibility and Optimality in NLP 4

Suppose we choose a grid of points x for each xj l, ... ,

3k

and set up the P. restricted master linear program as in (7) • If NLP

is a nonconvex program we can no longer guarantee that A feasible for A

P• implies x given by (3) is feasible for NLP , nor can we guarantee

that optimization will automatically lead to an adjacent interpolation.



Nevertheless P is a linearization of NLP In this section we explore

the relation between feasibility and optimality for PX and feasibility and

optimality for NLP.

Theorem 2 Let 2 be primal optimal and (7 , C) be dual optimal for the

linear program P2  (7) with objective function value Z . Let. x* have

components as in (3) • Let x (globally) solve
k

min L(x, r) . (16)
xeC

If a) f(x*) g Z (17)

b) g (x*) g 0 V.i- i, ... , m (18)

A n

c) L(x o (19)
J=l

Then x* solves NLP (globally).

Proof at optimality for P we have equal primal L.P and dual L.P.

objective function values,



wi2 writing the dual to P• shows that dual feasibility requires

liiThus by Theore 1, .(16) gives .

(20

L(Z $ ) r min( f(x) l: feasible for NLP.} (22)

combining (17), (19), (20), (22) with feasibility of x* in NIS gives

Z = : a L(I , .) m rin( f(x) 'x feasible for NLP} f f(x*) Z Z (23)

Thus all the above quantities are equal and x solves NLP QED .

iA

Theorem 2 gives conditions which are sufficient for optimality in

NLP. These conditions are not, however, necessary. In particular they

will fail to hold for any nonconvex NLP which has a duality gap. The

primary value of the theorem is that it suggests an algorithm for getting

closer to a solution. When condition c) is not satisfied, then some-

x i s a new grid point which improves the approximation of P -to NLP,

while if a) or b) is violated, then the problem is nonconvex in the
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vicinity of x and we must resort to branch and bound. These ideas

will be made precise in sectisn III-C.

Theorem 2 required that P. possess an cptimal solution, but it is

also possible that P. may be infeasible. The following 2 theorems

explore this situation and its implications for the original problem NLP.

Theorem 3 If P is infeasible, then the dual to P• is unbounded.

Proof The duality theorem of Linear Programming implies that the dual

to P1 is either unboundec. or infeasible, but T = 0 n= mn f(xjk)
jk

is a feasible solution to the dual. Hence it is unbounded. QMD

Theorem 4 Suppose P• is infeasible and (iw, a) + G(OO',a) (8 Ž 0)

describes a dual feasible ray along which the dual to PX becomes
* A

unbounded. Suppose x solves the Lagrangian minimization

min f(x)- 7 ri gi(x) (24)•• XFC. i

(1a4 Y. solves the related minimization

ngj(x). (25)
7ri g

.I w 1 (26)

ft I ll I I I I |1i• I • •~ I lm • IIlI I s • E



and 9~7ig (z'~ (27)1

I 4I

then NLP is infeasible. 4

Proof By (24), (25), (26), and (27) we have, for any xeC , and for

iAi

min )- f (it +0 71.) g() W :txEC i1 ,.

{min f(x)-> i g7(x)}1 f rmin - T gi(x))' :
xEC 1 xeC i

•,: (a + O0"~

Thus for any gridpoints x e C which we might choose, the resulting
jk i5

.', stillhas (Ir ) + O(ar , a') as a dual feasible ray along which the

dual objective function is unbounded, and hence this P is infeasible.

But If xeC is feasible for NLP, then choosing its components x be

grid points must give a feasible P . Hence NLP is also infeasible. QED.

. "24
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C. The Algorithm

The algorithm proposed in this section is a branch and bound

method. Branching is done by dividing the interval C [aj b J for

some variable x into two subintervals. At each stage t of the search

A; t
a linearized problem Pt over some subintervals Ct is solved.

Lagrangian minimizations (i4) then provide 1) an optimality test,

2) an infeasibility test, 3) (perhaps) new grid points for incorporation

t
into Pt as well as 4) a'new lower bound on the optimal value of NLP

restricted to x C C The detailed description of the algorithm follows:

Ji

Step I Initialization

For each j =1,., n choose an initial grid as Xj j ,a
Jo

x b . Let P t with t 1 I(= subproblem counter) be the P program

ji t
corresponding to this initial grid. Let C [a, bj . Let Lt-= -

t
be the current largest lower bound for P Let F0  be the-value

of f(x) for the best incumbent feasible solution to NLP found so far.

Place Pj on a list of subproblems and go to step 2.

Step 2 Linear Program

If the list of subproblems is empty, stop. The incumbent solution is

global optimal. Otherwise select from the list of subproblemz the problem
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13f

p t with the smallest lower bound Lt

Solve this linear program P, yielding optimal value Z with

optimal primal variables X and optimal dual variables 7T , 0 .

[If Pt is infeasible the solution yields a dual feasible ray

k

(Or a) + e(7r1 ,1.) (29)

along w•-ich the dual is unbounded]

Go to step 3.

Step 3, Lagrangian Minimization

Solve thi n single variable p.rblems Min Lj (x , ir) giving

.solutions x.

t
[If F _ was eaajible alosolve- min t In19i (Y giving

solutions xa . I
t L ( I



If B;! F° then izmediately fathom Pt and go to step 2.

0 t tIf F > B > L then increase the value of the bound for Pt to

L = B and go to step 4 Otherwise go to step 4 without changing the bound.

Step 4 New Grid Points

For each j =1,..., n, if L (• , 7r) < c0 then incorporate x as a

new gridpoint for x in the subproblem P Place the new p, sub-

problem on the list and go to step 2. Otherwise go to step 5.
• t[For an infeasible PA , if all L (X^ ,7) k a and if

17r 'gi (x 1 ) < q then incorporate x as a new grid point for P t

and go to Step 2.

Ifall 17r 9 (x )a also, then fathom P t since (by Theorem 4)1 ij i ~A ne(yhoe

the corresponding NLP subproblem is infeasible.]

Step 5 Optimality Test

Compute x* from A using (3) . If gikx*): 0, i= 1 ,..., m , and

f(x*) < F0  then replace Fo with f(x*) and let x* be the new incumbent

solution.

SIf a.) f(x*) e Z

and b.) gi(x*) 4 0 i = m ,..., m, then tby Theorem 2) x* is global

optimal for the ANLP subproblem over x&Ct• Go to step 2.

If a) or b) is violated go to step 6.
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Step 6 Branch

Let I{i (x*) >o0 Let

= ,jk fJk and )ýi J Jk giJk

Let £ be the subscript j = 1 ,...l n which solves

ici

"Let be a new grid point for and define two new subproblems,

) t * include only grid pointsa.) P restricted to

Sbe restri cten to n ince4tde only grido leints
b.) p t restricted to xt Z: x, to the right of xj)

Let the bound for each of these problems be Lt and-place both on the list.

Go to step 2

IV. RELATION TO OTHER METIHODS

The algorithm proposed in Section III is related to several other

computational methods for separable nonlinear optimization. One set of

relationships can be seen by considering other algorithms whose fundamental

mechanism is the grid-linearization representation.
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For convex programs P1 representation with fixed grid is one of the

oldest and most used nonlinear programming techniques [E]. The general-

ization to a variable grid for convex programs [2] is the nonlinear analogue

for the Dantzig Wolfe decomposition principle [5]

Nonconvex programs with a fixed grid were considered by Falk [6] and

Beale and Tomlin £7] where branch and bound was used to force adjacent

interpolations. The current method is the natural culmination of a

4 variable grid and nonconvex problems.

Another set of relationships is with other existing branch and bound

methods for nonconvex optimization. A significant contribution here was

the work of Falk and Soland [8] and Soland [9] who used convex envelopes

of nonconvex functions to form a convex approximating problem which was

then imbedded in a branch and bound structure. Our method is similar except

that the convex envelope problem is replaced by a sequence of improving

P linear approximations. The P, problems are easier to formulate and

to solve, but they lack the property of being a consistent underestimate of

the original problem functions. As a result, the bounds for our problem

are derived from Lagrangian duality in con"-;s-st to the Falk and Soland

bounds which derive directly from the convex envelopes. Greenberg 10]3

indicates that Lagrangian bounds are stronger than convex envelope bounds

in some circumstances. If all the problem functions are concave, then

convex envelopes are the same as linear interpolations between the end-

points of the intervals C In this case our algorithm is very similar

to that of Soland [9) , and step 4 would never occur. Another similar

branch and bound method for the concave case with linear constraints is

due to Walkup Eli]
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V COMPUTATIONAL CONSIDERATIONS
Implementation of the algorithm outlined in section III involves

three distinct computational requirements. I
a.) Solve the linear programs PI

b.) Solve the single'variable nonconvex Lagrangian minimizations

c.) Generate and maintain the problem list required by the

Branch and Bound structure. {

In this section we discuss each of these briefly indicating possible

choices and tradeoffs which might influence the efficiency of the procedure.

The linear programs PXt which must be solved in step 2 of the

algorithm have m + n constraints and as many variables as there are grid

points in the subrectangle C The n convexity constraints 1

k

V can be handled implicitly by a Generalized Upper Bounding algorithm,

so the effective basis size is only m . Any sparsity in the original NLP

t
constraints (giJ (xj 0) is inherited in the first m constraints of p

Thus P~t is a linear program which may have substantial structure and which

should not be too difficult to solve. When new grid poi.nts are added to an

existing P the existing solution provides a natural advanced start for i

the new optimization. Another possibility, when the number of grid points

becomes excessive is to drop non-basic grid point columns from the problem.

However, for the convex case this destroys the convergence proof.

In Step 3 of the algorithm we must perform the single variable Lagrangian

minimization of L(x 3 ,. f) Z f(x•) - •, (,) over the interval : (xj



t * C If f and the areaJllconvex (and Z O) then

L is convex in x. and the minimization can be easily, handled by methods

such as Fibonacci search or perhaps even analytically by setting the

derivative to zero. If f£ and the gii are concave, then Li is concave

also and one endpoint of Ct will be minimal. In the general case where

L is neither convex nor concave, the problem of globally mi.nimizing L

over an interval is not trivial. Most of the existing methods are heuristic

in nature, but if bounds on the derivatives of L are known, then a
j

minimax optimal search plan due to Shubert [121 can be used. In any case

these are single variable minimizations over an interval and should be

substantially easier than a direct n-dimensional search for the solution

to NLP.

In most branch and bound algorithms there are tradeoffs between solution

strate67 and required storage, and these tradeoffs Lffect the efficiency of

the resulting algorithm. This algorithm is no exception. There are two

principal tradeoffs to be considered. The first is related to which sub-

problem on the list should be solved at any given iteration. As the

algorithm is written, the "most promising" subproblem (smallest Lt) is

attacked at each iteration. It is easy to imagine situations in which

two distinct equal valued glob~l minima exist and the algorithm would

spend much time switching back and forth between the respective sub-

problems doing very little work on each at a given iteration. It might

be better to do more work on a given subproblem to avoid so many switches

even if this means temporarily working on a subproblem which is not the

most promising.
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The answer to this question depends on huw much trouble it is to. set

up a new subproblem. This depends on how much information is stored about

the subproblem and previous solutions to it. Some choices, in decreasing

order of storage requirement are the entire tableau, the previous optimal

basis inverse, the previous optimal basis vectors, or just the grid points

which define the problem. There is clearly a tradeoff here between storage

space and solution speed. The decision which is made in any particular

case must depend on the computational facilities available and experience

-with the class of problems to be solved.

VI. AREAS FOR FURTHER STUDY

This report has presented the outline for an algorithm which solves 2

separable nonconvex optimization problems using linear subproblems. The

method has close relationships to several existing optimization methods,

but also some desirable advantages over them. There are several areas

which require further investigation:

a.) At the moment the convergence properties of the method

are unknown. An effort to resolve the question is

currently underway.

b.) Since the P restricted master problems are linear, it

should be possible to exploit special structure in NLP to

a considerable degree. We plan to investigate this in

the near future. !
c.) Computational behavior of the method on particular classes

of nonconvex problems is of interest.

d.) As computational experience accumulates the questions of

branch and bound organization raied in section V should

be resolved.
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e.) For fixed grid problems Beale and Tomlin 173 have shown how

t
strong bounds can be derived directly from the PX optimal

tableau. Possible extension to the variable grid case should

be investigated.

p
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